LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2007

MT 5501 - REAL ANALYSIS

AB 17

Max.: 100 Marks

Date: 26/10/2007 Time: 9:00 - 12:00 Dept. No.

SECTION - A

 $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

- 1. Define Countable and uncountable sets.
- 2. State Cauchy Schwarz inequality.
- 3. Prove that the intersection of an arbitrary collection of closed sets in a metric space *X* is closed in *X*.
- 4. Prove that a compact subset of a metric space is bounded.
- 5. Define a Cauchy sequence in a metric space.
- 6. Define the right hand and left hand limits of a function *F* at *C*.
- 7. If F is differentiable at C, then prove that F is continuous at C.
- 8. State Rolle's theorem.
- 9. State the linearity property of Riemann Stieltjes integral.
- 10. Define limit superior of a real sequence.

SECTION - B

 $(5 \times 8 = 40 \text{ marks})$

Answer any FIVE questions.

- 11. State and prove Minkowski's inequality.
- 12. Prove that every subset of a countable set is countable.
- 13. If Y is a subspace of a metric space (X, d), then prove that a subset A of Y is open in Y if and only if $A = Y \cap G$ for some set G open in X.
- 14. Prove that a closed subset of a compact metric space is compact.
- 15. Prove that the Euclidean space R^K is complete.
- 16. Let (X,d_1) and (Y,d_2) be metric spaces, X be compact and $F:X\to Y$ be continuous on X. Show that F is uniformly continuous on X.
- 17. State and prove intermediate value theorem for derivatives.
- 18. Let $\{a_n\}$ be a real sequence. Then prove that
 - i) $\{a_n\}$ converges to ℓ if and only if $\lim \inf a_n = \lim \sup a_n = \ell$
 - ii) $\{a_n\}$ diverges to $+\infty$ if and only if $\lim\inf a_n = +\infty$

SECTION - C

 $(2 \times 20 = 40 \text{ marks})$

Answer any TWO questions.

- 19. a) Prove that the set *R* is uncountable.
 - b) If F is a countable collection of pair wise disjoint countable sets,

then prove that $UF_{F \in F}$ is countable. (7)

c) If A is a countable set and B an uncountable set, then prove that B-A is similar to B. (5)

(8)

- 20. a) Prove that every bounded and infinite subset of R has at least one accumulation point. (10)
 - b) Let S and T be subsets of a metric space (X,d). Prove that S^1 is a closed set in X. (10)
- 21. a) Prove that in a metric space every convergent sequence is Cauchy. (6)
 - b) Let (X, d_1) and (Y, d_2) be metric spaces. Then prove that a map. $F: X \to Y$ is continuous on X if and only if $F^{-1}(G)$ is open in X for every open set G in Y. (14)
- 22. a) State and prove Taylor's theorem. (10)
 - b) Let $F \in R(\alpha)$ on [a,b]. Then prove that $\alpha \in R(F)$ on [a,b] and

$$\int_{a}^{b} f d\alpha + \int_{a}^{b} \alpha df = F(b) - F(a)\alpha(b) - \int_{a}^{b} F(a)\alpha(a). \tag{10}$$
